49 research outputs found

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Modèle connexionniste neuromimétique pour la perception visuelle embarquée du mouvement

    No full text
    Le recherche en connexionnisme est en face des fortes contraintes d'autonomie en robotique notamment issues des tâches perceptives visuelles qui n'ont pas encore été satisfaites par les modèles neuronaux utilisés jusqu'à aujourd'hui, surtout celles liées à la perception du mouvement. Dans ce cadre, nous proposons un modèle connexionniste neuromimétique permettant de traiter un ensemble de tâches de perception visuelle dynamique (robot/objets environnants en mouvement). Cela implique le compromis de maintenir la satisfaction des contraintes (bio-inspiration, traitements locaux massivement distribués en vue d'une implantation ultérieure temps-réel embarquée sur circuit FPGA, Field Programmable Gate Array) au cœur de la définition du modèle proposé, malgré la complexité des tâches en jeu. Le modèle connexionniste proposé pour la perception visuelle du mouvement est constitué de trois modules : le premier opère un filtrage spatio-temporel causal issu des filtres de Gabor et inspiré des réponses des cellules simples du cortex visuel primaire, V1. Le deuxième met en place un mécanisme distribué de fortes interactions localisées fondé sur un principe antagoniste inspiré de l'organisation en colonnes d'orientation dans V1. Finalement, en nous inspirant des propriétés des champs récepteurs des neurones de MT et MST (aire temporelle moyenne et supérieur moyenne, respectivement), nous intégrons les réponses du second module et les envoyons au troisième. Ce dernier fait émerger un seul objet en mouvement à travers l'évolution en différentes cartes des interactions latérales, en pro-action et en retro-action d'une population neuronale densément interconnectée selon le principe de la CNFT (Continuum Neural Field Theory). L'attention sur l'objet émergé nous permet donc de le suivre.The connectionist research is in front of the strong constraints of autonomy in robotics issue of visual perceptive tasks that have not yet been satisfied by the neural models defined until now, particularly to the linked to motion perception ones. In this context, we propose a neuromimetic connectionist model allowing to deal with a set of tasks for dynamic visual perception (robot/objects in movement). It implies the compromise to satisfy some major constraints (bio-inspiration, massively distributed local processing aimed at being embedded on FPGA circuits for real-time processing) that must be kept central in the definition of our proposed model, in spite of the complexity of the considered tasks. Our connectionist model for the visual perception of motion consists of three modules : the first one performs a causal spatio temporal filtering based on Gabor filters and inspired by the responses of the simple cells of the primary visual cortex, V1. The second one carries out a distributed mechanism using strong localized interactions based on an antagonist principle inspired by the organization of V1 as a set of orientation columns. Finally, we integrate the responses of the second module and we send them to the third one, as inspired by the properties of the receptive fields of the MT and MST (middle temporal and middle superior temporal areas, respectively). This last module brings to the foreground a single moving object through the evolution in different maps of the laterals, feed-forward and feed-back interactions of a neural population that is densely interconnected according to the principle of the CNFT (Continuum Neural Field Theory). Globally, a single moving object is focused and followed as a result of these interactions.NANCY1-SCD Sciences & Techniques (545782101) / SudocNANCY-INRIA Lorraine LORIA (545472304) / SudocSudocFranceF

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs

    Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC

    No full text
    We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%

    Reproducibility of fluorescent expression from engineered biological constructs in E. coli

    No full text
    We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.Peer reviewe

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Get PDF
    We present measurements of Underlying Event observables in pp collisions at s√=0.9 and 7TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p T,LT in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p T thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2–3 between the lower and higher collision energies, depending on the track p T threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed p T in the Transverse region by about 10–30%

    Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.7Calouste Gulbenkian Foundation from LisbonSwiss Fonds Kidagan, ArmeniaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Financiadora de Estudos e Projetos (FINEP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Natural Science Foundation of China (NSFC)Chinese Ministry of Education (CMOE)Ministry of Science and Technology of China (MSTC)Ministry of Education and Youth of the Czech RepublicDanish Natural Science Research CouncilCarlsberg FoundationDanish National Research FoundationEuropean Research Council under European CommunityHelsinki Institute of PhysicsAcademy of FinlandFrench CNRS-IN2P3Region Pays de LoireRegion AlsaceRegion AuvergneCEA, FranceGerman BMBFHelmholtz AssociationGeneral Secretariat for Research and Technology, Ministry of Development, GreeceHungarian OTKANational Office for Research and Technology (NKTH)Department of Atomic EnergyDepartment of Science and Technology of the Government of IndiaIstituto Nazionale di Fisica Nucleare (INFN) of ItalyMEXT, JapanJoint Institute for Nuclear Research, DubnaNational Research Foundation of Korea (NRF)CONACYTDGAPA, MexicoALFA-ECHELEN Program (High-Energy physics Latin-American-European Network)Stichting voor Fundamenteel Onderzoek der Materie (FOM)Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), NetherlandsResearch Council of Norway (NFR)Polish Ministry of Science and Higher EducationNational Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS)Federal Agency of Science of the Ministry of Education and Science of Russian FederationInternational Science and Technology Center, Russian Academy of SciencesRussian Federal Agency of Atomic EnergyRussian Federal Agency for Science and InnovationsCERN-INTASMinistry of Education of SlovakiaDepartment of Science and Technology, South AfricaCIEMATEELAMinisterio de Educacion y Ciencia of SpainXunta de Galicia (Conselleria de Educacion)CEADENCubaenergia, CubaIAEA (International Atomic Energy Agency)Swedish Reseach Council (VR)Knut & Alice Wallenberg Foundation (KAW)Ukraine Ministry of Education and ScienceUnited Kingdom Science and Technology Facilities Council (STFC)The United States Department of EnergyUnited States National Science FoundationState of TexasState of OhioFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore